+2.5 V to +5.5 V, $500 \mu \mathrm{~A}$, Quad Rail-to-Rail, Voltage Output8/10/12-BitDACs

Preliminary Technical Data

FEATURES

AD5304: Four Buffered 8-Bit DACs in One Package AD5314: Four Buffered 10-Bit DACs in One Package AD5324: Four Buffered 12-Bit DACs in One Package 10-Lead μ SOIC Package
Micropower Operation: 500 $A @ 3 V, 600 \mu A @ 5 V$ +2.5 V to +5.5 V Power Supply
Guaranteed Monotonic By Design Over All Codes
Power Down to 50nA@3V, 200nA@5V
Double-Buffered Input Logic
Output Range: $0-V_{\text {REF }}$
Power-On-Reset to Zero Volts
Simultaneous Update of Outputs (ㄷDAC Function)
Low-Power Serial Interface with Schmitt-Triggers
On-Chip Rail-to-Rail Output Buffer Amplifiers
Temperature range $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$.

APPLICATIONS

Portable Battery Powered Instruments Digital Gain and Offset Adjustment
Programmable Voltage and Current Sources
Programmable Attenuators
Industrial Process Control

GENERAL DESCRIPTION

The AD 5304/AD 5314/AD 5324 are quad 8, 10 and 12-bit buffered voltage output DACs in a 10 -lead μ SOIC package which operate from a single +2.5 V to +5.5 V supply consuming $500 \mu \mathrm{~A}$ at 3 V . Their on-chip output amplifiers allow rail-to-rail output swing to be achieved with a slew rate of $0.7 \mathrm{~V} / \mu \mathrm{s}$. A 3 -wire serial interface is used which operates at clock rates up to 30 MHz and is compatible with standard SPI ${ }^{\mathrm{TM}}, ~$ QSPI ${ }^{\mathrm{TM}}$, MICROWIRE ${ }^{\mathrm{TM}}$ and DSP interface standards.
The references for the four DACs are derived from one reference pin. The outputs of all DACs may be updated simultaneously using the software $\overline{\text { LDAC }}$ function. The parts incorporate a power-on-reset circuit that ensures that the DAC outputs power up to zero volts and remain there until a valid write takes place to the device. The parts contains a power-down feature which reduces the current consumption of the device to $200 \mathrm{nA} @ 5 \mathrm{~V}$ ($50 \mathrm{nA} @ 3 \mathrm{~V}$).
The low power consumption of these parts in normal operation make them ideally suited to portable battery-operated equipment. The power consumption is 3 mW at 5 V reducing to $1 \mu \mathrm{~W}$ in power-down mode.

FUNCTIONAL BLOCK DIAGRAM

*Protected by U.S. Patent No. 5684481; other patents pending
$\mathbf{S P I}{ }^{\mathrm{TM}}, \mathbf{Q S P I}{ }^{\mathrm{TM}}$ are Trademarks of Motorola, Inc.
MICROWIRE ${ }^{\mathrm{TM}}$ is a Trademark of N ational Semiconductor Corporation.

AD5304/AD5314/AD5324- SPECIFICATIONS

($\mathrm{V}_{\mathrm{D} D}=+2.5 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=+2 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $G N D ; \mathrm{C}_{\mathrm{L}}=200 \mathrm{pFto} \mathrm{GND} ;$ All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted.)

NOTES

${ }^{1}$ SeeT erminology
${ }^{2} \mathrm{~T}$ emperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
${ }^{3}$ DC specifications tested with the outputs unloaded.
${ }^{4}$ Linearity is tested using a reduced code range: AD 5304 (code 8 to 248); AD 5314 (code 28 to 995); AD 5324 (code 115 to 3981)
${ }^{5} \mathrm{G}$ uaranteed by D esign and C haracterization, not production tested
${ }^{6}$ In order for the amplifier output to reach its minimum voltage, O ffset E rror must be negative. In order for the amplifier output to reach its maximum voltage, $\mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{DD}}$ and "Offset plus G ain" Error must be positive.
Specifications subject to change without notice.

AD5304/AD5314/AD5324 Preliminary Technical Data

ACCHARACTERISTICS ${ }^{1}$
$\left(V_{D D}=+2.5 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $\mathrm{GND} ; \mathrm{C}_{\mathrm{L}}=200 \mathrm{pFto} \mathrm{GND} ;$ All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {Max }}$ unless otherwise noted.)

Parameter ${ }^{2}$	Min	$\begin{gathered} \text { B Version }^{3} \\ \text { Typ } \end{gathered}$	Max	Units	Conditions/Comments
Output Voltage Settling Time AD 5304		6	8	$\mu \mathrm{s}$	$V_{\text {REF }}=V_{D D}=+5 \mathrm{~V}$ $1 / 4$ Scale to $3 / 4$ Scale change (40 Hex to CO Hex)
AD 5314		7	9	$\mu \mathrm{s}$	$1 / 4$ Scale to $3 / 4$ Scale change (100 Hex to 300 Hex)
AD 5324		8	10	$\mu \mathrm{s}$	1/4 Scale to $3 / 4$ Scale change (400 Hex to COO Hex)
Slew Rate		0.7		V/us	
M ajor-Code Change Glitch Impulse		12		nV-s	1 LSB change around major carry.
Digital Feedthrough		0.10		nV-s	
DAC-to-DAC Crosstalk		0.01		nV-s	
Multiplying Bandwidth		200		kHz	$V_{\text {Ref }}=2 \mathrm{~V} \pm 0.1 \mathrm{Vpp}$
Total Harmonic Distortion		-70		dB	$\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V} \pm \mathrm{Vpp}$. F requency $=10 \mathrm{kHz}$.

NOTES

${ }^{1}$ Guaranteed by DesignandC haracterization, notproductiontested
${ }^{2}$ SeeT erminology
${ }^{3} \mathrm{~T}$ emperaturerangefor B Version: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
Specificationssubjecttochangewithoutnotice.

TMMINGCHARACTERISTICS ${ }^{1,2,3}$
$\left(V_{D D}=+2.5 \mathrm{~V}\right.$ to +5.5 V . All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted)

Parameter	Limit at $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$ (B Version)	Units	Conditions/Comments
t_{1}	33	ns min	SCLK Cycle Time
t_{2}	13	ns min	SCLK High Time
t_{3}	13	ns min	SCLK Low Time
t_{4}	0	ns min	$\overline{\text { SYNC }}$ to SCLK Rising Edge Setup Time
t_{5}	5	ns min	Data Setup Time
t_{6}	4.5	ns min	Data Hold Time
t_{7}	0	ns min	SCLK Falling Edge to $\overline{\text { SYNC Rising Edge }}$
t_{8}	33	ns min	M inimum $\overline{\text { SYNC }} \mathrm{H}$ igh Time

NOTES
${ }^{1}$ G uaranteed by D esign and C haracterization, not production tested.
${ }^{2}$ All input signals are specified with $\mathrm{tr}=\mathrm{tf}=5 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{I L}+\mathrm{V}_{I H}\right) / 2$.
${ }^{3}$ See Figure 1.

Figure 1. Serial Interface Timing Diagram

AD5304/AD5314/AD5324 Preliminary Technical Data

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

($T_{A}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
$V_{D D}$ to GND...-0.3V to +7 V
Digital Input Voltage to GND..........-0.3V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Reference Input Voltage to $G N D \ldots-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {OUT }} A-D$ to $G N D$........................-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range
Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature Range.................. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ($\mathrm{T}_{\mathrm{J}} \mathrm{max}$) $150^{\circ} \mathrm{C}$

10-Lead MicroSOIC Package
Power Dissipation..........................(T, $\left.\max -\mathrm{T}_{\mathrm{A}}\right)$ / $\theta_{\text {JA }}$
$\theta_{\mid \mathrm{A}}$ Thermal Impedance
........206 ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering
Vapor Phase (60 sec) $+215^{\circ} \mathrm{C}$
Infrared (15 sec) $+220^{\circ} \mathrm{C}$
${ }^{1}$ Stresses abovethoselisted under "AbsoluteM aximum Ratings" may causepermanent damageto the device. Thisisastressratingonly, and functional operation of thedevice at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periodsmay affect devicereliability.
${ }^{2}$ T ransient currents of up to 100 mA will not cause SC R latch-up

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5304/AD 5314/AD 5324 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. T herefore, proper precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

ORDERING GUIDE

Model	Temperature Range	Package Option*	Branding Information
AD 5304BRM	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$\mathrm{RM}-10$	D B B
AD 5314BRM	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	R M -10	D C B
AD 5324BRM	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	R M -10	D D B

*RM $=$ M icrosolc.

PIN FUNCTION DESCRIPTION

PIN NUMBERS

Pin No.	Mnemonic	Function
1	$V_{D D}$	Power Supply Input. These parts can be operated from +2.5 V to +5.5 V and the supply should be decoupled to GND.
2	$V_{\text {OUT }}$ A	Buffered analog output voltage from DAC A. The output amplifier has rail-to-rail operation.
3	$\mathrm{V}_{\text {OUT }} \mathrm{B}$	Buffered analog output voltage from DAC B. The output amplifier has rail-to-rail operation.
4	$V_{\text {OUT }} \mathrm{C}$	Buffered analog output voltage from DAC C. The output amplifier has rail-to-rail operation.
5	$V_{\text {Ref }}$	Reference Input pin for all four DACs. It has an input range from 0 V to V_{DD}.
6	$V_{\text {OUT }}$ D	Buffered analog output voltage from DAC D. The output amplifier has rail-to-rail operation.
7	G N D	Ground reference point for all circuitry on the part.
8	DIN	Serial Data Input. This device has a 16 -bit shift register. Data is clocked into the register on the falling edge of the serial clock input. The DIN input buffer is powered-down after each write cycle.
9	SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at rates up to 30 MHz . The SCLK input buffer is powered-down after each write cycle.
10	$\bar{S} \bar{Y} \bar{N} \bar{C}$	Active Low Control Input. This is the frame synchronization signal for the input data. When $\overline{\text { SYNC }}$ goes low, it enables the input shift register and data is transferred in on the falling edges of the fol lowing 16 clocks. If $\overline{\text { SYNC }}$ is taken high before the 16th falling edge of SCLK, the rising edge of SYNC acts as an interrupt and the write sequence is ignored by the device.

AD5304/AD5314/AD5324 Preliminary Technical Data

TERMINOLOGY

RELATIVE ACCURACY

For the DAC, Relative Accuracy or Integral Nonlinearity (INL) is a measure of the maximum deviation, in LSBs, from a straight line passing through the endpoints of the DAC transfer function. A typical INL vs. Code plot can be seen in Figure x.

DIFFERENTIAL NONLINEARITY

Differential Nonlinearity (DNL) is the difference between the measured change and the ideal 1LSB change between any two adjacent codes. A specified differential nonlinearity of $\pm 1 \mathrm{LSB}$ maximum ensures monotonicity. This DAC is guaranteed monotonic by design. A typical DNL vs. Code plot can be seen in Figure x.

OFFSET ERROR

This is a measure of the offset error of the DAC and the output amplifier. It is expressed as a percentage of the full-scale range.

GAIN ERROR

This is a measure of the span error of the DAC. It is the deviation in slope of the actual DAC transfer characteristic from the ideal expressed as a percentage of the full-scale range.

OFFSET ERROR DRIFT

This is a measure of the change in Offset Error with changes in temperature. It is expressed in (ppm of FullScale Range) $/{ }^{\circ} \mathrm{C}$.

GAIN ERROR DRIFT

This is a measure of the change in gain error with changes in temperature. It is expressed in (ppm of Full-Scale Range) $/{ }^{\circ} \mathrm{C}$.

POWER-SUPPLY REJECTION RATIO (PSRR)

This indicates how the output of the DAC is affected by changes in the supply voltage. PSRR is the ratio of the change in $\mathrm{V}_{\text {OUt }}$ to a change in $\mathrm{V}_{\text {DD }}$ for full-scale output of the DAC. It is measured in dBs . $\mathrm{V}_{\text {ref }}$ is held at +2 V and $V_{D D}$ is varied $\pm 10 \%$.

DC CROSSTALK

This is the DC change in the output level of one DAC in response to a change in the output of the other DAC. It is measured with a full-scale output change on one DAC while monitoring the other DAC. It is expressed in mV .

REFERENCE FEEDTHROUGH

This is the ratio of the amplitude of the signal at the DAC output to the reference input when the DAC output is not being updated. It is expressed in dBs .

MAJOR-CODE TRANSITION GLITCH ENERGY

Major-Code Transition Glitch Energy is the energy of the impulse injected into the analog output when the code in the DAC register changes state. It is normally specified as the area of the glitch in $n V$-secs and is measured when the digital code is changed by 1LSB at the major carry transition (011... 11 to $100 \ldots 00$ or 100... 00 to 011...11).

DIGITAL FEEDTHROUGH

Digital Feedthrough is a measure of the impulse injected into the analog output of the DAC from the digital input pins of the device when the DAC output is not being updated. It is specified in nV-secs and is measured with a worst-case change on the digital input pins, e.g. from all 0 s to all 1 s and vice versa.

DAC-TO-DAC CROSSTALK

This is the glitch impulse transferred to the output of one DAC due to a digital code change and subsequent output change of another DAC. This includes both digital and analog crosstalk. It is measured by loading one of the DACs with a full-scale code change (all 0 s to all 1 s and vice versa) with the $\overline{\text { LDAC }}$ bit set low and monitoring the output of another DAC. The energy of the glitch is expressed in nV -secs.

MULTIPLYING BANDWIDTH

The amplifiers within the DAC have a finite bandwidth. The Multiplying Bandwidth is a measure of this. A sine wave on the reference (with full-scale code loaded to the DAC) appears on the output. The Multiplying Bandwidth is the frequency at which the output amplitude falls to 3 dB below the input.

TOTAL HARMONIC DISTORTION

This is the difference between an ideal sine wave and its attenuated version using the DAC. The sine wave is used as the reference for the DAC and the THD is a measure of the harmonics present on the DAC output. It is measured in dBs.

AD5304/AD5314/AD5324 Preliminary Technical Data

Figure 2. Transfer Function with Negative Offset

Figure 3. Transfer Function with Positive Offset

AD5304/AD5314/AD5324 Preliminary Technical Data

FUNCTIONAL DESCRIPTION

The AD 5304/AD 5314/AD 5324 are quad resistor-string DACs fabricated on a CMOS process with resolutions of 8,10 and 12 bits respectively. Each contains four output buffer amplifiers and each is written to via a 3-wire serial interface. They operate from single supplies of +2.5 V to +5.5 V and the output buffer amplifiers provide rail-to-rail output swing with a slew rate of $0.7 \mathrm{~V} / \mu \mathrm{s}$. The four DACs share a single reference input pin. The devices have a programmable power-down mode, in which all DACs may be turned off completely with a high-impedance output.

Digital-to-Analog Section

The architecture of one DAC channel consists of a resis-tor-string DAC followed by an output buffer amplifier. The voltage at the $\mathrm{V}_{\text {Ref }}$ pin provides the reference voltage for the DAC. Figure 4 shows a block diagram of the DAC architecture. Since the input coding to the DAC is straight binary, the ideal output voltage is given by:
where $D=$ decimal equivalent of the binary code which is loaded to the DAC register;

0-255 for AD 5304 (8-bits)
0-1023 for AD 5314 (10-bits)
$0-4095$ for AD 5324 (12-bits)
$\mathrm{N}=\mathrm{DAC}$ resolution

Figure 4. DAC channel architecture

Resistor String

The resistor string section is shown in Figure 5. It is simply a string of resistors, each of value R. The digital code loaded to the DAC register determines at what node on the string the voltage is tapped off to be fed into the output amplifier. The voltage is tapped off by closing one of the switches connecting the string to the amplifier. Because it is a string of resistors, it is guaranteed monotonic.

DAC Reference Inputs

There is a single reference input pin for the four DACs. The reference input is unbuffered. The user can have a reference voltage as low as GND and as high as V_{DD} since there is no restriction due to headroom and footroom of the reference amplifier.
It is recommended to use a buffered reference in the external circuit (e.g. REF192). The input impedance is typically $180 \mathrm{k} \Omega$.

Figure 5. Resistor String

Output Amplifier

The output buffer amplifier is capable of generating rail-to-rail voltages on its output which gives an output range of $O V$ to $V_{D D}$ when the reference is $V_{D D}$. It is capable of driving a load of $2 k \Omega$ to GND or $V_{D D}$, in parallel with 500 pF to an AC GND. The source and sink capabilities of the output amplifier can be seen in Figure x. The slew rate is $0.7 \mathrm{~V} / \mu \mathrm{s}$ with a half-scale settling time to $+/-0.5$ LSB (at 8 bits) of $6 \mu \mathrm{~s}$.

POWER-ON RESET

The A5304/AD 5314/AD 5324 are provided with a poweron reset function, so that they power up in a defined state. The power-on state is:

- Normal operation
- Output voltage set to OV

Both input and DAC registers are filled with zeros and remain so until a valid write sequence is made to the device. This is particularly useful in applications where it is important to know the state of the DAC outputs while the device is powering-up.

AD5304/AD5314/AD5324 Preliminary Technical Data

SERIAL INTERFACE

The AD5304/AD5314/AD5324 are controlled over a versatile, 3 -wire serial interface, which operates at clock rates up to 30 MHz and is compatible with SPI ${ }^{\text {TM }}$, QSPI $^{\top M}, ~ M I C R O W I R E^{\top M}$ and DSP interface standards.

Input Shift Register

The input shift register is 16 -bits wide. Data is loaded into the device as a 16-bit word under the control of a serial clock input, SCLK. The timing diagram for this operation is shown in Figure 1 on page 3. The 16-bit word consists of four control bits followed by 8, 10 or 12 bits of DAC data, depending on the device type. The first two bits loaded are the Bit 15 (MSB) and Bit 14. These determine whether the data is for DAC A, DAC B, DAC C or DAC D. Bit 13 is $\overline{\mathrm{PD}}$ which determines whether the part is in Normal or PowerDown mode. Bit 12 is $\overline{\text { LDAC }}$ which controls when DAC registers and outputs are updated. Bits 13 and 12 control the operating mode of the DAC.

TABLE 1. ADDRESS BITS FOR THE AD53X4

A1	A0	DAC Addressed
0	0	DAC A
0	1	DAC B
1	0	DAC C
1	1	DAC D

Address and Control bits

$\overline{\mathrm{P}} \overline{\mathrm{D}}$:
0: All four DACs go into Power-Down mode consuming only 200 nA @ 5 V . The DAC outputs enter a high-impedance state. 1:Normal operation.
$\bar{L} \overline{D A} \bar{C}: 0: A l l$ four DAC registers and hence all DAC outputs updated simultaneously on completion of the write sequence.
1: Addressed input register only is updated. There is no change in the contents of the DAC registers.
The AD 5324 uses all 12 bits of DAC data, the AD 5314 uses 10 bits and ignores the two LSBs. The AD5304 uses 8 bits and ignores the last 4 bits. The data format is straight binary, with all zeros corresponding to OV output and all ones corresponding to full-scale output ($\mathrm{V}_{\text {REF }}$ 1LSB).
The $\overline{\text { SYNC }}$ input is a level-triggered input that acts as a frame synchronization signal and chip enable. Data can only be transferred into the device whilst SYNC is low. To start the serial data transfer, $\overline{\text { SYNC }}$ should be taken low observing the minimum SYNC to SCLK active edge setup time, t_{4}. After $\overline{\text { SYNC }}$ goes low, serial data will be shifted into the device's input shift register on the falling edges of SCLK for 16 clock pulses. Any data and clock pulses after the 16th falling edge of SCLK will be ignored because the SCLK and DIN input buffers are powered down. No further serial data transfer will occur until $\overline{\text { SYNC }}$ is taken high and low again.

Figure 6. AD5304 Input Shift Register Contents
MSB
LSB

Figure 7. AD5314 Input Shift Register Contents
MSB

A1	A0	$\overline{\text { PD }}$	$\overline{\text { LDAC }}$	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

Figure 8. AD5324 Input Shift Register Contents

AD5304/AD5314/AD5324 Preliminary Technical Data

$\overline{\text { SYNC }}$ may be taken high after the falling edge of the 16th SCLK pulse, observing the minimum SCLK falling edge to $\overline{\text { SYNC }}$ rising edge time, t_{7}.
After the end of serial data transfer, data will automatically be transferred from the input shift register to the input register of the selected DAC. If SYNC is taken high before the 16th falling edge of SCLK, the data transfer will be aborted and the DAC input registers will not be updated.
When data has been transferred into three of the DAC input registers, all DAC registers and all DAC outputs may be updated simultaneously, by setting $\overline{\mathrm{LDAC}}$ low when writing to the remaining DAC input register.

Low-Power Serial Interface

To reduce the power consumption of the device even further, the interface only powers-up fully when the device is being written to. As soon as the 16 -bit control word has been written to the part, the SCLK and DIN input buffers are powered-down. They only power-up again following a falling edge of $\overline{\text { SYNC. }}$

D ouble-B uffered Interface

The AD5304/AD5314/AD5324 DACs all have doublebuffered interfaces consisting of two banks of registers input registers and DAC registers. The input register is connected directly to the input shift register and the digital code is transferred to the relevant input register on completion of a valid write sequence. The DAC register contains the digital code which the resistor string uses.
Access to the DAC register is controlled by the LDAC bit. When the $\overline{\text { LDAC }}$ bit is set high, the DAC register is latched and hence the input register may change state without affecting the contents of the DAC register. However, when the $\overline{\text { LDAC }}$ bit is set low, all DAC registers are updated after a complete write sequence.
This is useful if the user requires simultaneous updating of all DAC outputs. The user may write to three of the input registers individually and then, by setting the $\overline{\text { LDAC }}$ bit low when writing to the remaining DAC input register, all outputs will update simultaneously.
These parts contain an extra feature whereby the DAC register is not updated unless its input register has been updated since the last time that $\overline{\mathrm{LDAC}}$ was brought low. Normally, when $\overline{\text { LDAC }}$ is brought low, the DAC registers are filled with the contents of the input registers. In the case of the AD5304/AD5314/AD5324, the part will only update the $D A C$ register if the input register has been changed since the last time the DAC register was updated thereby removing unnecessary digital crosstalk.

POWER-DOWN MODE

The AD5304/AD5314/AD 5324 have low power consumption, dissipating only 1.5 mW with a 3 V supply and 3 mW with a 5 V supply. Power consumption can further be reduced when the DACs are not in use by putting them into power-down mode, which is selected by bit $13(\overline{\mathrm{PD}})$ of the control word.

When the $\overline{\mathrm{PD}}$ bit is set to 1 , the relevant DAC works normally with its normal power consumption of approx $150 \mu \mathrm{~A}$ at 5 V . However, in power-down mode, the supply current falls to 200 nA at 5 V (50 nA at 3 V) when all DACs are powered-down. N ot only does the supply current drop but the output stage is also internally switched from the output of the amplifier to a resistor network of known values. This has the advantage that the output impedance of the part is known while the part is in power-down mode and provides a defined input condition for whatever is connected to the output of the DAC amplifier. The output stage is illustrated in Figure x .
The bias generator, the output amplifier, the resistor string and all other associated linear circuitry are all shut down when the power-down mode is activated. However, the contents of the registers are unaffected when in powerdown. The time to exit power-down is typically $2.5 \mu \mathrm{~s}$ for $V_{D D}=5 \mathrm{~V}$ and $5 \mu s$ when $V_{D D}=3 \mathrm{~V}$.

Figure 9. Output Stage during Power-Down

AD5304/AD5314/AD5324 Preliminary Technical Data

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

10-Lead MicroSOIC (RM-10)

AD5304/AD5314/AD5324 Preliminary Technical Data

OVERVIEW OF ALL AD53xx SERIAL DEVICES

